

Page 1/2

											Page 1/2		
	Licenc	e Numb	er	SKM9999/2									
Annex to Solar Keymark Cert	Date is	ssued		2022-07-27									
							by		DQS Hellas				
Licence holder	PAPAE	MMA	NOUELS	S.A.		Country	Country Greece						
Brand (optional)	•						b www.papaemmanouel.gr						
Street, Number	10 Km I	nofyta –	St. Thom	as, Inofyta	Viotia	E-mail	exports@papaemmanouel.gr						
Postcode, City	32011,	Viotia				Tel	+30 22620 31931						
0.11						Ter cons							
Collector Type						Flat plat	e collecto	r					
			ء ۔	Gross width	Gross height	Power output per collector Gb = 850 W/m2, Gd = 150 W/m2 & u = 1.3 m/s $\vartheta_m - \vartheta_a$							
	Gross	Gross area (A _G)											
Collector name		oss.	Gross length										
			<u> </u>			0 K	10 K 30 K		50 K	70 K	89 K		
		m²	mm	mm	mm	W	W	W	W	W	W		
FMAX_2.72		2.72	2,160	1,260	86	2,107	2,018	1,821	1,597	1,348	1,093		
FMAX_2.72H		2.72	1,260	2,160	86	2,107	2,018	1,821	1,597	1,348	1,093		
											-		
			-										
			-			<u> </u>			<u> </u>				
			-										
									ļ				
									ļ				
Power output per m² gross area						775	742	669	587	495	402		
Performance parameters test meth		Steady s	tate - out	tdoor									
Performance parameters (related t	o A _G)	η0, b	a1	a2	a3	a4	a5	a6	a7	a8	Kd		
Units		-	W/(m²K)	$W/(m^2K^2)$	J/(m³K)	-	J/(m²K)	s/m	W/(m²K⁴)	W/(m²K⁴)	-		
Test results		0.784	3.15	0.012	0.000	0.00	9,720	0.000	0.00	0.0E+00	0.92		
Incidence angle modifier test meth	od		Steady s	tate - out	door								
Incidence angle modifier		Angle	10°	20°	30°	40°	50°	60°	70°	80°	90°		
Transversal		K _{θT,coll}	1.00	1.00	1.00	0.99	0.96	0.90	0.78	0.52	0.00		
Longitudinal		K _{θL,coll}	1.00	1.00	1.00	0.99	0.96	0.90	0.78	0.52	0.00		
		UL,COII					Water	3.50					
Heat transfer medium for testing Flow rate for testing (per gross area, A _G)									0.022	ka/lcm²	1		
Maximum temperature difference during thermal performance test							dm/dt $(\vartheta_m - \vartheta_a)_{max}$			0.022 kg/(sm²) 58.5 K			
								nax	190.5	°C			
Standard stagnation temperature (G = 1000 W/m²; ϑ _a = 30 °C)							მ _{stg}						
Maximum operating temperature							ϑ _{max_op}		_				
Maximum operating pressure Testing laboratory NCSR Demokritos / Solar & other Energy System							p _{max,op} 1000 kPa						
Testing laboratory			s / Solar	& other E	nergy Syst	tem		ar.demo	kritos.gr				
Test report(s)	4196DE2						Dated			16/11/16			
	4197DQ3						2-6-20217						
							<u> </u>		6.0/65.51	2020;			
Comments of testing laboratory							1	Ver.	6.2 (13.01	.2022)			
							NCCD	"DEMO	KPITO	en J			
							SOLAR	ENERGY	KRITO:	111	WIT		
							Tel: +210 (5503815 - Fa	x: +210 65445	92 AW	ness		
							P.O. BOX 60	037, 15310 Ag.	Paraskevi, Gree	ece	14.,		
0 1 1000 14 1 15 2 2 2							210 (222				•••		

Annex to Solar Keymark Certific			Licen	e Nur	nber	Page 2/2 SKM9999/2							
Supplementary Information			Issued	<u> </u>	2022-07-27								
					0	100000							
Gross Thermal Yield in kWh/collect	or at m			peratu				l . l l				_	
Standard Locations Collector name	25°C	Athens 50°C		25°C	Davos	75°C	25°C	tockhol 50°C	m 75°C	25°C	Vürzbur 50°C		
Collector name ϑ _n		2,564			50°C		1,954	1,349	874	2,121		75°C	
FMAX 2.72H		2,564					_		874		1,461	932	
	-,	_,			_,			_,-,					
Gross Thermal Yield per m ² gross area	1,258	942	657	983	714	482	718	496	321	780	537	343	
Annual efficiency, η_a	71%	53%	37%	60%	44%	30%	62%	43%	28%	63%	43%	28%	
Fixed or tracking collector	/1/0	J370									43/0	20/0	
Annual irradiation on collector plane	1765 kWh/m²			ed (slope = latitude - 15°; rounded to 1630 kWh/m ² 1166 kWl									
Mean annual ambient air temperature	18.5°C			3.2°C			7.5°C			9.0°C			
Collector orientation or tracking mode	South, 25°			S	South, 30°			South, 45°			South, 35°		
The collector is operated at constant te	mperati	ure θm	(mean c	of in- an	d outlet	t tempe	ratures	. The ca	alculatio	n of the	e annua	l	
collector performance is performed wit													
description of the calculations is availab	le at ht	tp://ww	w.estif.	org/sol	arkeym	arknew,	/						
-		Add	litiona	l Info	matio	n							
Collector heat transfer medium		7				-				Water-	Glycole		
The collector is deemed to be suitable f	or roof i	integrat	ion					No					
The collector was tested successfully ur	der the	followi	ng cond	itions:									
Climate class (A+, A, B or C)										4	-	-	
G (W/m ²) > 1000	ϑ_{z}	, (°C) >			20			H _X (MJ	/m ²) >		60	00	
Maximum tested positive load									3000			Pa	
Maximum tested negative load										000	Р	a	
Hail resistance using steel ball (maximu										2	r	n	
Heira automodi accomando (a) for a com		dditio						. عاد ممالا ،				NI-	
Using external power source(s) for norm		ation	No			ve meas	sure(s) i	or seit-	protect	ion		No	
Co-generating thermal and electrical po			No	Façade	collecto							No	
Energy Labelling Information							e Technical Data						
	Reference Area, A _{sol} (m²)			_		Designa	Aperture Area, A _a (m ²)						
FMAX_2.72	2.72					7.2,206	2.57						
FMAX_2.72H	AX_2.72H 2.72			18-V-1234S-A:7.2,1158-C:20.6,2240-					2.57				
Data required for CDR (FU) No 811/20	3 - Refe	erence	Area	Data re	aguired	for CDE	e (EII) N	0.812/2	2013 - R	Reference	το Λτοα	Λ .	
Data required for CDR (EU) No 811/20:	.3 - Refe		Area					o 812/2		Reference	ce Area	A _{sol}	
Data required for CDR (EU) No 811/20: Collector efficiency (n _{col})	13 - Refe	erence /	Area	Zero-lo	ss effici	ency (η)	o 812/2	0.	Reference 77 15	-	-	
		63%	Area	Zero-lo First-o	ss effici der coe		(a ₁)	o 812/2	0. 3.	77	ce Area - W/(i W/(r	- n²K)	
Collector efficiency (η_{col}) Remark: Collector efficiency (ηcol) is defined 811/2013 as collector efficiency of the solar of	in CDR (I	63% EU) No at a temp	erature	Zero-lo First-o Secono	ss effici der coe -order	ency (η _ι efficient	(a ₁) ent (a ₂)		0. 3. 0.0	77 15	W/(ı	- n²K)	
Collector efficiency (η_{col}) Remark: Collector efficiency (ηcol) is defined 811/2013 as collector efficiency of the solar colference between the solar collector and the	in CDR (I ollector a e surrou	63% EU) No at a temp nding air	erature of 40 K	Zero-lo First-o Secono Incider	ss effici der coe -order ce angl	ency (η _ι efficient coefficie e modif	(a ₁) ent (a ₂) ier IAM	(50°)	0. 3. 0.0 0.	77 15 012	W/(I W/(r	- m²K) n²K²) -	
Collector efficiency (η_{col}) Remark: Collector efficiency (ηcol) is defined $811/2013$ as collector efficiency of the solar cdifference between the solar collector and the and a global solar irradiance of 1000 W/m^2 , expressions as (η_{col}) .	in CDR (I ollector a e surrou xpressed	63% EU) No at a temp nding air I in % and	perature of 40 K	Zero-lo First-or Second Incider Remark	ss effici der coe -order ce angl	ency (nefficient coefficient e modif a given in	(a_1) ent (a_2) ier IAM on this sec	(50°)	0. 3. 0.0 0. related t	77 15 012 96	W/(I W/(r - or referen	n ² K) n ² K ²) -	
Collector efficiency (η_{col}) Remark: Collector efficiency (η col) is defined 811/2013 as collector efficiency of the solar odifference between the solar collector and the and a global solar irradiance of 1000 W/m², erounded to the nearest integer. Deviating from	in CDR (I ollector a e surrou xpressed m the re	63% EU) No at a temp nding air I in % and	perature of 40 K I ncol is	Zero-lo First-on Second Incider Remark area (A gross ar	ss effici der coe -order o ce anglo The dat on on ison	ency (no efficient coefficient e modifica given in is apert O 9806. C	(a ₁) ent (a ₂) ier IAM this secure area Consisten	(50°) tion are for value t data se	0. 3. 0.0 0. related t	77 15 012 96 to collecteding to Ell	W/(I W/(r W/cr or referent N 12975 ture or g	m ² K) m ² K ²) - nce 2 or	
Collector efficiency (η_{col}) Remark: Collector efficiency (ηcol) is defined $811/2013$ as collector efficiency of the solar cdifference between the solar collector and the and a global solar irradiance of 1000 W/m^2 , expressions as (η_{col}) .	in CDR (I ollector a e surrou xpressed m the re ure area	63% EU) No at a temportation air a temportation air and and architecture at the control of the c	perature of 40 K I ncol is	Zero-lo First-oi Second Incider Remark area (A gross ar area car	ss effici der coe -order o ce anglo The dat on on ison	ency (no efficient coefficient e modifica given in this apert to 9806. Co	(a ₁) ent (a ₂) ier IAM this secure area Consisten	(50°) tion are for value t data se	0. 3. 0.0 0. related t	77 15 012 96 to collecteding to El	W/(I W/(r W/cr or referent N 12975 ture or g	m ² K) m ² K ²) - nce 2 or	